

- used when triangle has a 90° angle.
- SIN \Rightarrow RISE
- $\mathrm{COS} \Rightarrow$ RUN
- TAN \Rightarrow SLOPE
- SIN and COS of any angle are between (+/-) 1
- $0^{\circ}<$ angle $<45^{\circ} \Longrightarrow$ COS $>$ SIN
- 45° < angle $<90^{\circ} \Longrightarrow$ SIN > COS
- Law of Sines and Cosines are used when triangle has no right angles.
- Law of Sines is used when you are given more angles than sides.
- Law of Cosines is used when you are given more sides than angles

Variations in L.O.A.

- Shallower angles ($<45^{\circ}$) have
larger horizontal components
Components of a Force:

Transmissibility:

Force Addition:

Algebraic Method:

- For finding the resultant of several forces

Force	Horizontal	Vertical
1	$+/-$	$+/-$
2	$+/-$	$+/-$
3	$+/-$	$+/-$
R	$+/-\mathrm{R}_{\mathrm{X}}=\Sigma \mathrm{X}$	$+/-\mathrm{R}_{\mathrm{y}}=\Sigma \mathrm{Y}$

Variations in Sense:

Graphic Method for Force Addition:

P_{x}

- Steeper angles ($>45^{\circ}$) have larger vertical components

P_{x}
Properties of a Force:

P_{x}

- For finding the Resultant of several forces.

- Tail of 2 on Head of $1 _$Resultant begins at $1^{\text {s }}$ Tai
- A Force is defined by four properties:

1. Point of Application (P.O.A.)
2. Magnitude (\#,kips)
3. Sense (Arrowhead, Push or Pull, C or T)
4. Line of Action (L.O.A.) , (Angle with horizontal)

- The Resultant of several forces is a single force that has the same effect on a body as all the other forces combined.
- The Resultant is also a force and is thus defined by the four properties listed above.
- The Equilibrant is also defined as a force that has the same P.O.A., Magnitude and L.O.A. as the Resultant but has an opposite sense (Arrow)
- Algebraic Method for finding the Resultant of several forces is used when force magnitudes and lines of action for each force are known
- Algebraic Method of Force Addition

1. Resolve each force into vertical and horizontal components
2. The algebraic (+/-) sum of all horizontal components gives the horizontal component of the Resultant.
3. The algebraic (+/-) sum of all vertical components gives the vertical component of the Resultant

- Graphic Method is used when a system is in equilibrium and we need to calculate one or more unknown forces that contribute to equlibrium
- Graphic Method for Force Addition

1. Arrange all forces Head to Tail then add (independent of order)
2. Resultant begins with its Tail at the Tail of the $1^{\text {st }}$ Force and Head at the Head of the last
3. Resultant can be determined through calculation

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \(\frac{8}{0}\) \& Moment
\[
\text { Moment = Force } \mathbf{x}_{\ldots}
\]
ccw + \& \begin{tabular}{l}
ce \\
Force Positiv about
\end{tabular} \& ates a ment A \& \& \& Force Negat about \& \& \begin{tabular}{l}
- A \& B are called Centers of Moment, or Centers of Rotation \\
- The perpendicular distance (d) is called the Moment Arm, \\
- summing Moments (\(\Sigma \mathrm{M}=0\)) to establish equilibrium \\
- To find Beam / Truss reactions \\
- To maintain equilbrium of members \\
- Overturning Moments due to Wind Loads or Hydrostatic Pressure
\end{tabular} \\
\hline \& \begin{tabular}{l}
Couple \\
Moment of a Couple \(=\mathrm{Pxd}\) (clockwise, CW)
\end{tabular} \& \& \& CCW \& \& \& \& \begin{tabular}{l}
- Unlike a Moment, a Couple is NOT about a certain point, but rather it is about ANY and ALL points. \\
- A Couple depends on Force (P), and perpendicular distance (d) between two Forces that make up the couple. \\
- Couple between top Chord (C) and bottom chord (T) in a simply supported truss \\
- Couple between compression in concrete (top) and tension in rebar (bottom) of reinforced beam
\end{tabular} \\
\hline . \& \begin{tabular}{rrl|l|}
\hline Formulas \& \& \& \\
\& \(\mathrm{F}: \frac{\mathrm{P}}{\mathrm{A}}\) \& \(\Longrightarrow\) \& Direct Stre \\
\& \(\varepsilon: \frac{\Delta \mathrm{L}}{\mathrm{L}_{0}}\) \& \(\Longrightarrow\) \& Unit Strain \\
\(\mathrm{E}: \frac{\mathrm{F}}{\varepsilon}\) \& \(\Longrightarrow\) \& \begin{tabular}{l}
Modulus of \\
Elastitity \\
Stress \(/ \mathrm{S}\)
\end{tabular}
\end{tabular} \& \begin{tabular}{l}
ress \\
in \\
of \\
Strain
\end{tabular} \& \begin{tabular}{c}
Units \\
\hline PSI \\
in / in \\
PSI
\end{tabular} \& \& \& \& \& \begin{tabular}{l}
1. ELASTIC RANGE: straight line relationship, slope \(=\mathrm{E}\) \\
2. PLASTIC RANGE: increase in strain, no increase in Load / Stress \\
3. STRAIN HARDENING: material deforming in section (necking), and in length \\
4. FAILURE: Material is gone! \\
5. YIELD POINT/ YIELD STRENGTH: material is no longer elastic, deformation is permanent \\
6. ULTIMATE STRENGTH: material is about to fail \\
7. RUPTURE: Kiss it Good-Bye \\
8. E: Modulus of Elasticity.Measures material's resistance to deformation
\end{tabular} \\
\hline \& \multicolumn{7}{|l|}{} \& \begin{tabular}{l}
- Shortening or Elongation of members along their axis \\
- Change (Expansion \& Contraction) of shape due to Temperature \\
- Examples include Columns, Trusses, Cables, Cross Bracing
\end{tabular} \\
\hline \& \multicolumn{7}{|l|}{} \& \begin{tabular}{l}
- If a Member is inadequate in Shear, increasing the Area (either Width (b) or Depth (d)) is effective. \\
- If a Member is inadequate in Deflection, increasing the Moment of Inertia (Width (b) is OK; but Depth (d) is cubed and) is much more effective in reducing Deflection. \\
- If a Member is inadequate in Bending, increasing the section modulus (width (b) is OK; but Depth (d) is squared and) is much more effective in reducing Bending.
\end{tabular} \\
\hline \& \begin{tabular}{l}
Roller: 1 Reaction (V) \\
Fixed / Moment: 3 Reactions (V , H , M)
\end{tabular} \& Pin / \& \begin{tabular}{l}
nge: \\
ous:
\end{tabular} \& tiple Reactions \& \begin{tabular}{l}
Simply Support
| \\
y \\
Indeterminate \\
ताग 2 2 ती, \\

\end{tabular} \& \begin{tabular}{l}
2 \\
2 \\
\hline (Deter \\
A.r \\
\#3
\end{tabular} \& 1
1
गीn

3 \& | - Statically Determinate (Simply Supported) loading = three unknown reactions, and can be solved using the equation of Static equilibrium. |
| :--- |
| - Statically Indeterminate loading > 3 unknown Reactions Call your engineer. |
| - Pin/Hinged connections iclude most wood to wood, bolted steel, and precast concrete connections. |
| - fixed connections include most welded steel / steel connections and cast-in-place concrete. |

\hline
\end{tabular}

	Example 1: - $L<R$ - $L=\frac{5^{\prime}}{15^{\prime}} \times 12^{k}=4^{k}$ - $R=\frac{10^{\prime}}{15^{\prime}} \times 12 \mathrm{k}=8^{k}$ Example 2:			- $\mathrm{M}=$ Moment - V =Shear - Equilibruim $=\sum \mathrm{F}_{\mathrm{x}}=0 ; \sum \mathrm{F}_{\mathrm{v}}=0 ; \sum \mathrm{M}_{\text {Anv }}=0$ - Sum of Areas in Shear Diagram = Moment - Magnitude of drop = Concentrated Load - Between concentrated loads, Moment Diagram Slopes - Uniform loads create gradual drop in Shear (straight line) - Uniform loads create curve (downward cup) in Moment Diagram - Overhangs and cantilevers will always have a negative Moment in Moment Diagram. Simply supported beams always have positive Moments - $V_{\text {MAX }}$ always occurs at support \Longrightarrow Moment is minimum - $\mathrm{M}_{\text {max }}$ occurs where $\mathrm{V}=0$ - Uniform load coefficient, w, = slope in Shear Diagram - Point of Inflection (P.O.I.) is a point on the Moment Diagram where $\mathrm{M}=0$ - Point of Inflection only happens when a beam has an overhang - If Loading Diagram (FBD) is symmetrical, then the Shear Diagram and the Moment Diagram are also symmetrical. - Maximum Shear dictates how much Beam area is needed - Maximum Moment dictates how much Bema Depth is needed - If a hole must be punched out of a Beam to allow for passage of pipe or similar reduction, this must happen at a location of low Shear and low Bending Moment
		Top and Bottom Chord Stress Stress increases towards middle	Stress increases towards end panels	- A Truss is inherently stable due to triangulation - Truss is stable in its own plane but needs bridging or cross-bracing perpendicular to its own plane - All joints in an honest Truss are Pinned Joints - Rigid Joints in a Truss will result in less Deflection than Pinned Joints (Advantage) - Rigid Joints in a Truss will result in larger size members than Pinned Joint Trusses since members will have to resist V and M in addition to C or T (Disadvantage) - Members carrying Tension can be much smaller than members carrying Compresion - $\mathrm{m}+3=2 \mathrm{j}$; where $\mathrm{m}=$ Number of Members $\mathrm{j}=\text { Number of Joints }$ - Method of Joints is used to analyze Force / Stress in every member of a Truss - Method of Joints is also used to analyze Force / Stress in a member that is close to a support (not in middle of truss) - Method of Sections is used to analyze only a few (3 max) members of a truss - After cutting a truss in 2 segments, each segment is in Equilibrium $\quad \Sigma \mathrm{F}_{\mathrm{X}}=0 ; \Sigma \mathrm{F}_{\mathrm{Y}}=0 ; \Sigma \mathrm{M}_{\mathrm{ANY}}=0$ - Concentrated Loads in a Truss must be applied at panel points; otherwise we have combined stresses (T or $\mathrm{C}+\mathrm{V}$ and M) - Joints that have three or less members framing into them, may potentially have Zero Members

WOOD COLUMNS:
Slenderness
$\mathrm{L}_{\text {UNB }} / \mathrm{d}_{\text {Least }}$
$k _ { \text { wood } } = 0 . 6 7 1 \longdiv { E }$
NS:

$|$| $\frac{\text { STEEL COLUMNS: }}{}$$\frac{\mathrm{kL} \text { UNB. }}{\mathrm{r}}$
 Slenderness: |
| :--- |

- $\mathrm{F}_{\mathrm{C}}=\mathrm{P} / \mathrm{A}$
- Long and thin (slender) columns tend to be governed by buckling

