

The Non-User's Pocket Guide to the Transient Knowledge Necessary for the Structural Divisions of the Architect Registration Exam- ARE

CONCEPT	FORMULAE AND DIAGRAMS	COMMENTS
Moments and Couples	Moment Moment = Force X \perp Distance Force P creates a Positive Moment about point A H A CCW + CCW	 A & B are called Centers of Moment, or Centers of Rotation The perpendicular distance (d) is called the Moment Arm, or Lever Summing Moments (∑M = 0) to establish equilibrium To find Beam / Truss reactions To maintain equilbrium of members Overturning Moments due to Wind Loads or Hydrostatic Pressure
	Moment of a Couple= P x d (clockwise, CW)	 Unlike a Moment, a Couple is <u>NOT</u> about a certain point, but rather it is about ANY and ALL points. A Couple depends on Force (P), and perpendicular distance (d) between two Forces that make up the couple. Couple between top Chord (C) and bottom chord (T) in a simply supported truss Couple between compression in concrete (top) and
Stress / Strain	Formulas Units $F: \stackrel{P}{A} \Rightarrow$ Direct Stress PSI $\epsilon: \stackrel{\Delta L}{L_o} \Rightarrow$ Unit Strain in / in $E: \stackrel{F}{\epsilon} \Rightarrow$ Modulus of E: $\stackrel{F}{\epsilon} \Rightarrow$ Modulus of E: $\stackrel{F}{\epsilon} \Rightarrow$ Modulus of Stress / Strain PSI	tension in rebar (bottom) of reinforced beam 1. ELASTIC RANGE: straight line relationship, slope = E 2. PLASTIC RANGE: increase in strain, no increase in Load / Stress 3. STRAIN HARDENING: material deforming in section (necking), and in length 4. FAILURE: Material is gone! 5. YIELD POINT/ YIELD STRENGTH: material is no longer elastic, deformation is permanent 6. ULTIMATE STRENGTH: material is about to fail 7. RUPTURE: Kiss it Good-Bye 8. E: Modulus of Elasticity.Measures material's resistance to deformation
Axial Loads	$\Delta L: \text{ deformation, changes in Length (in)} \\ \Delta L = \underbrace{PL_{0}}_{AE} \xrightarrow{P : Axial Load (\#,k)} \\ A : Cross Sectional Area (in2) \\ F : Modulus of Flasticity (PSI KSI) \\ \hline \Delta L = \underbrace{PL_{0}}_{A: Cross Sectional Area (in2)} \\ F : Modulus of Flasticity (PSI KSI) \\ \hline \Delta L = \underbrace{A_{A36}, A_{.50} = 29,000 \text{ KSI}}_{A.50} = 29,000 \text{ KSI} \\ \hline \Delta L = \alpha (\Delta T) L_{0} \\ \Delta L: Deformation, change in length (in), caused by change in temperature (°F) \\ \Delta T: Change in temperature \\ \alpha : Coefficient of thermal \\ expansion/contraction \\ \hline \alpha : E = \sum \Delta L $	 Shortening or Elongation of members along their axis Change (Expansion & Contraction) of shape due to Temperature Examples include Columns, Trusses, Cables, Cross Bracing
Geometry	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	 If a Member is inadequate in Shear, increasing the Area (either Width (b) or Depth (d)) is effective. If a Member is inadequate in Deflection, increasing the Moment of Inertia (Width (b) is OK; but Depth (d) is cubed and) is much more effective in reducing Deflection. If a Member is inadequate in Bending, increasing the section modulus (width (b) is OK; but Depth (d) is squared and) is much more effective in reducing Bending.
Support Conditions	Roller: 1 Reaction (V)Pin / Hinge: 2 Reactions (V, H)Simply Supported: (Determinate) $1 \\ rmrr$ \Rightarrow \downarrow <th> Statically Determinate (Simply Supported) loading = three unknown reactions, and can be solved using the equation of Static equilibrium. Statically Indeterminate loading > 3 unknown Reactions Call your engineer. Pin/Hinged connections iclude most wood to wood, bolted steel, and precast concrete connections. fixed connections include most welded steel / steel connections and cast-in-place concrete. </th>	 Statically Determinate (Simply Supported) loading = three unknown reactions, and can be solved using the equation of Static equilibrium. Statically Indeterminate loading > 3 unknown Reactions Call your engineer. Pin/Hinged connections iclude most wood to wood, bolted steel, and precast concrete connections. fixed connections include most welded steel / steel connections and cast-in-place concrete.

The Non-User's Pocket Guide to the Transient Knowledge Necessary for the Structural Divisions of the Architect Registration Exam- ARE

CONCEPT

FORMULAE AND DIAGRAMS

COMMENTS

